您的位置 > 首页 > 会议讲座 > 讲座预告|姜正瑞:Time to Upgrade under Successive Product Generations: A Surviva ...

讲座预告|姜正瑞:Time to Upgrade under Successive Product Generations: A Surviva ...

来源:天津大学管理与经济学部 | 2018-05-04 | 发布:经管之家

主题:Time to Upgrade under Successive Product Generations: A Survival Model with Exponential-Decay Baseline Function多代产品选择下用户产品升级决策研究——基于指数衰减的生存分析

主讲人:姜正瑞

时间:2018年5月9日 上午10:00-12:00

地点:25教学楼C区412

主讲人介绍:

姜正瑞博士是爱荷华州立大学商学院信息系统与商务分析系教授。姜博士的研究领域包括:Business intelligence/analytics, Data quality, Decision-making under uncertainty, Diffusion of technological innovations, 以及 Economics of information technology。他的多项研究成果已经发表在顶级学术期刊上,包括Management Science, MIS Quarterly, Information Systems Research, INFORMS Journal on Computing, IEEE Transactions on Knowledge and Data Engineering, 和Journal of Management Information Systems等,以及顶级的学术会议上如ICIS, WITS, 和 INFORMS等。

姜博士目前担任Information Systems Research的副主编。在过去的几年里,他曾担任MIS Quarterly的副主编,以及POM和ACM Transactions for MIS 的特刊编辑。 他于2016年获得MISQ杰出副编辑奖。此外他还担任第十三届年度Big XII+ MIS研究研讨会(2015)和第九届中西部信息系统年会(2014)的联合主席。他目前担任第28届信息系统与技术研讨会(WITS)的联合主席。姜博士的研究已经被美国国际开发署(USAID)和中国国家自然科学基金会(NSFC)资助。

讲座介绍:

In the presence of successive product generations, most customers are repeat buyers, who may decide to purchase a future product generation before its release. As a result, after the new product generation enters the market, its sales often show a declining pattern, making traditional bell-shaped diffusion models unsuitable for characterizing the timing of product upgrades by customers. In this study, we propose a survival model with exponential-decay baseline function (or exponential-decay model) to predict customers’ time to upgrade to a new product generation. Compared with existing proportional hazard models, the exponential-decay model is parsimonious and easy to interpret. In addition, empirical analysis using upgrade and usage data for a major sports video game series shows that the exponential-decay model performs better than or as well as existing parametric models in prediction accuracy. Furthermore, we show that, by extending the basic exponential-decay model to a time-variant model, the prediction accuracy can be further improved. Empirical results obtained using the basic and time-variant exponential-decay models are quite consistent, both revealing that customers’ previous adoption and usage patterns can help predict their timing to upgrade to a new product generation. In particular, we find that (i) potential customers who have adopted the previous generation are more likely to upgrade; (ii) heavy users tend to upgrade earlier; (iii) specialized customers demonstrate a lower probability to upgrade. These findings can help firms better understand customers’ upgrade behaviors and develop more personalized promotions to target customers.

本文已经过优化显示,查看原文请点击以下链接:
查看原文:http://come.tju.edu.cn/xwgg/xshd/201805/t20180504_306285.htm

看图学经济more

京ICP备11001960号  京ICP证090565号 京公网安备1101084107号 论坛法律顾问:王进律师知识产权;ど免责及隐私声明   主办单位:人大经济论坛 版权所有
联系QQ:2881989700  邮箱:service@pinggu.org
合作咨询电话:(010)62719935 广告合作电话:13661292478(刘老师)

投诉电话:(010)68466864 不良信息处理电话:(010)68466864
AG捕鱼酒店_AG捕鱼集团_AG捕鱼注册 吉林银行遭骗贷| 北理工80后副校长| 合肥学校男婴尸体| 斗鱼| 安徽3死3伤杀人案| 华中第一楼停工| 中国男子在日被捕| 20岁体操选手去世| 李佳琦被放鸽子| 天猫双11狂欢夜|